Hierarchical Discriminative Deep Dictionary Learning
نویسندگان
چکیده
منابع مشابه
Decentralized Dynamic Discriminative Dictionary Learning
We consider discriminative dictionary learning in a distributed online setting, where a network of agents aims to learn a common set of dictionary elements of a feature space and model parameters while sequentially receiving observations. We formulate this problem as a distributed stochastic program with a non-convex objective and present a block variant of the Arrow-Hurwicz saddle point algori...
متن کاملHierarchical Sparse Dictionary Learning
Sparse coding plays a key role in high dimensional data analysis. One critical challenge of sparse coding is to design a dictionary that is both adaptive to the training data and generalizable to unseen data of same type. In this paper, we propose a novel dictionary learning method to build an adaptive dictionary regularized by an a-priori over-completed dictionary. This leads to a sparse struc...
متن کاملGreedy Deep Dictionary Learning
—In this work we propose a new deep learning tool – deep dictionary learning. Multi-level dictionaries are learnt in a greedy fashion – one layer at a time. This requires solving a simple (shallow) dictionary learning problem; the solution to this is well known. We apply the proposed technique on some benchmark deep learning datasets. We compare our results with other deep learning tools like s...
متن کاملDiscriminative Dictionary Learning with Pairwise Constraints
In computer vision problems such as pair matching, only binary information ‘same’ or ‘different’ label for pairs of images is given during training. This is in contrast to classification problems, where the category labels of training images are provided. We propose a unified discriminative dictionary learning approach for both pair matching and multiclass classification tasks. More specificall...
متن کاملA Probabilistic Framework for Discriminative Dictionary Learning
In this paper, we address the problem of discriminative dictionary learning (DDL), where sparse linear representation and classification are combined in a probabilistic framework. As such, a single discriminative dictionary and linear binary classifiers are learned jointly. By encoding sparse representation and discriminative classification models in a MAP setting, we propose a general optimiza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3008841